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Free-surface horizontal waves generated by
low-frequency alternating magnetic fields
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(Received 7 September 2001 and in revised form 6 May 2004)

New types of electromagnetic parametric instability have been observed at the
periphery of the free surface of a liquid metal pool in the presence of a low-
frequency magnetic field. An experimental set-up is used to observe the motion of a
mercury layer on a substrate located in a solenoidal coil supplied with low-frequency
alternating electric currents. The Lorentz body forces produced are mainly oscillatory
and generate motion in the liquid. Various regular and irregular free-surface patterns
are observed. Two-dimensional stability analysis shows that axisymmetric waves are
directly forced by the electromagnetic forces while azimuthal waves are the result of
instability. The experimental stability diagram exhibits ‘tongues’ as already observed
for parametric resonance instability. For high magnetic field strengths, the free-surface
patterns become highly unstructured. High-amplitude ‘fingers’ as well as solitary
waves are observed. Measurements of the deformation observed on photographs are
compared with rough theoretical estimates.

1. Introduction
When a liquid metal pool is subjected to an a.c. magnetic field, electrical currents

are induced in the liquid metal and interact with the applied magnetic field to create
electromagnetic body forces referred to as Lorentz forces. These Lorentz forces are
composed of a mean value (time averaged) and an oscillating part that has a frequency
twice that of the magnetic field. They are responsible for both bulk motion and
free-surface deformation. Such phenomena are encountered in many metallurgical
applications such as electromagnetic stirring and levitation or quasi-levitation of
liquid metals. For very low applied magnetic field frequencies, the mean value of the
electromagnetic forces is negligible compared to the oscillating component (Taberlet &
Fautrelle 1985). Moreover, at low frequencies, the oscillating part is irrotational and
does not directly drive any liquid motion (Galpin & Fautrelle 1992, hereinafter
referred to as GF92). However, the oscillating force modifies the pressure field and
may in this way be indirectly responsible for free-surface motion. It has been shown
experimentally in GF92 that a uniform vertical low-frequency magnetic field (typically
a few Hertz) can generate various types of wave at the surface of a 200 mm-diameter
mercury pool. Galpin, Fautrelle & Sneyd (1992, hereinafter referred to as GFS92)
used theoretical stability analysis to show that both forced axisymmetric waves as well
as non-symmetric waves, resulting from parametric-type instabilities, were excited.

From a practical viewpoint, such phenomena may be useful in various metallurgical
processes. In ladle metallurgy for example, stirring of the free surface could be used
to produce the enhanced mass transfer across the liquid metal interface required to
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Density Surface tension Viscosity Electrical conductivity
ρ(kgm−3) γ (Nm−1) ν(m2 s−1) σ (Ω m−1)

13590 0.485 10−7 106

Table 1. Physical properties of the mercury at room temperature.

eliminate undesirable substances. In continuous casting of steel, electromagnetically
driven oscillation of the surface meniscus near the triple point, i.e. the area where
slag, liquid metal and solid metal are in contact, could partially replace mechanical
mould oscillation (Li, Sassa & Asai 1994).

We will study the behaviour of a thin pool of mercury subjected to a vertical low-
frequency magnetic field. The present paper is an extension of a previous preliminary
investigation (Daugan, Fautrelle & Etay 1999). The initial aim was to analyse the
free-surface motion by enhancing the electromagnetically driven horizontal motion
and minimizing the influence of gravity on the wave motion. Experiments involving
oscillating liquid drops have been carried out so far. Keizer (1977) studied self-induced
oscillations of a liquid mercury drop immersed in an electrolyte solution during
electrochemical reactions. For a liquid metal drop subjected to a high-frequency
a.c. magnetic field, typically of the order of 10 kHz, Karcher, Kocourek & Schulze
(2003) showed that axisymmetric shaping can become unstable and that horizontal
oscillations appear beyond a magnetic field threshold. Similar free-surface patterns
were investigated by Yoshiyasu, Matsuda & Takaki (1996) who focused on the motion
of a water drop on a vibrating plate. They observed regular surface waves, but it was
not possible to reach unstructured patterns. The surface motion was attributed to a
parametric instability. The present experiment is very similar to that carried out by
Yoshiyasu et al. (1996). We independently control the magnetic field amplitude and
frequency. Moreover, large magnetic field amplitude may be used, providing a wider
variety of phenomena.

The experimental set-up is described in § 2. Rough theoretical estimates of the
characteristics concerned are presented in § 3, the experimental results in § 4 and a
discussion of the results and conclusions in § 5.

2. Experimental set-up
The experimental apparatus is illustrated in figure 1. The mercury (physical proper-

ties listed in table 1) pool is set up on a Plexiglas substrate located inside a coil.
The coil is supplied with single-phase a.c. electric currents with frequencies varying
between 1 and 10 Hz. The dimensions of the coil are detailed in figure 1(a). The
number of turns is 500. In the centre of the coil, the magnetic field may be considered
to be uniform to within 1 %. The magnetic field strength B0 (maximum value) is
proportional to the coil current I (r.m.s. value), and the experimental proportionality
coefficient is 0.0024 ± 0.0001 in SI units. The accuracy is ±3A.

The pool has a circular shape at rest. Its size is defined by the outer radius a, as
shown in figure 1(c). It is determined by direct measurements with an accuracy of
±1mm. In order to centre the pool, the substrate has a slightly conical shape (figure
1(b). The cone angle α is equal to 1.745 × 10−2 rad. The radius a of the pool at rest
may be varied from 10 to 40 mm. Its apparent height h, as defined in figure 1(c),
depends on the value of the radius owing to the slightly conical shape of the substrate.
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Figure 1. Sketch of the apparatus: (a) overall view, (b) detailed view of the substrate,
(c) detailed view of the mercury pool.

Pool radius a (mm) Pool height h (mm) Meniscus height hm (mm)
20 2.28 ± 0.10 3.17 ± 0.20
30 2.64 3.36
40 3.01 3.47

Table 2. Experimental values of the pool height as a function of radius.

The value of h has been measured by photographic analysis for various radii and
the results are presented in table 2. The observations of the meniscus indicate that
the contact angle is almost 180◦. Therefore, the mercury does not wet the present
substrate. The actual meniscus height hm is somewhat higher than the value of h (see
for example figure 1c). By means of a simple geometrical correction, we may deduce
the value of hm from h. The results are given in table 2.

The meniscus shape at rest has not been calculated. However, from Davies & Rideal
(1963), Padday (1969) and Yoshiyasu et al. (1996), it is easy to obtain an estimate of
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Figure 2. View of a defect in the azimuthal pattern owing to the contact between the liquid
metal pool and the substrate (the initial drop radius is a = 30 mm, f = 8.050 Hz , I = 140 A).

the pool height he for the two-dimensional case corresponding approximately to the
large values of the radius. This estimate involves the capillary length d as follows:

he ≈ 2d ≈ 3.81 mm with d =

(
γ

ρg

)1/2

, (1)

where ρ, γ and g are the liquid density, surface tension and gravity, respectively.
The above estimate is higher than the experimental meniscus heights hm of table 2.
The pool motion is observed by video recording and image processing. The

recording frequency is 25 images per second.
Special attention has been paid to the reproducibility of the experiments. Electro-

magnetic forces produce motion in the liquid pool on the substrate and therefore the
surface properties of the latter play a relevant role in the motion. We have checked
that the wetting of the mercury on the Plexiglas substrate was very weak. However,
for smooth surfaces, the pool seems to stick on the substrate, and the experiments are
not reproducible in a satisfactory manner. Although wetting is weak, we suspect that
it is related to the mobility of the triple line (mercury/substrate/air). Figure 2 shows a
typical experimental example where the azimuthal-wave structure deteriorates owing
to this mobility. We find that the experiments are reproducible only if the substrate
surface has a significant roughness (at least around 0.05 mm). If this condition is
satisfied, the sticking effects are reduced, and the pool is able to move freely on the
substrate. Davies & Rideal (1963) have pointed out that the roughness of the substrate
increases the effective contact angle. Oxidation of the surface, when significant, can
also alter the mobility of the pool. Thus, clean mercury is used for each experiment
and the duration is limited.

We have not carried out systematic investigations on this issue. From a quantitative
point of view, the reproducibility has been tested by experimental determination of
the stability diagram in figure 9. Let us consider, for example, mode 5, which is the
most easily triggered. We assume that the limited data dispersion of the stability
curve obtained from the various measurement series attests to the reproducibility of
the experiments.
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Figure 3. Sketch of the two-dimensional model.

3. Theoretical estimates
Estimates of the eigenfrequencies

In order to interpret the various experimental results, it is of interest to estimate
the eigenfrequencies of the liquid drop. We have not tried to carry out a detailed
calculation of the general case. We focus rather on its quasi-planar oscillations. For
this, we use Lamb’s theory (1975) applied to a simple two-dimensional pool. The
liquid drop is modelled as a transverse slice of an infinite vertical cylindrical column,
with a circular shape at rest. The pool is considered as a truncated cylinder parallel
to the vertical z-axis. The upper free surface is assumed to be horizontal and flat (cf.
figure 3). The pool free surface may oscillate freely in a horizontal plane. Then, the
eigenfrequencies fn of the free oscillations of an inviscid liquid are given by

fn =
Ωn

2π
with Ωn =

γ

ρa3
n(n2 − 1), (2)

where n denotes the mode number in the Fourier decomposition of the lateral free
surface in the θ-direction of figure 3. The numerical values of fn are given in table 3.

Dimensionless parameters

The screen parameter Rω that measures the magnetic field created by the induced
electric currents compared to the applied magnetic field B is

Rω = µσωa2, (3)
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n 1 2 3 4 5 6 7

fn (theoretical values from (2)) (Hz) 0.0 0.448 0.896 1.417 2.004 2.652 3.354
fn (experimental values) (Hz) – – – 1.30 1.58 1.98 2.30

±0.04 ±0.04 ±0.03 ±0.03

Table 3. Values of the eigenfrequencies of the liquid pool for various values of n with
a = 0.03 m.

where µ and σ are the magnetic permeability and electrical conductivity of the mer-
cury. In our experiment, Rω ranges from 3 × 10−3 to 0.12. These values may be consi-
dered to be small. Thus, the applied magnetic field is weakly perturbed by the induced
electric currents (see Moreau 1990, for example). Note that the parameter Rω also
represents the dimensionless frequency.

The second dimensionless parameter represents the magnetic field amplitude. In
such a problem, where the free surface is driven by low-frequency magnetic fields, the
effect of the magnetic field amplitude B0 is accounted for in the interaction parameter
N (see GFS92)

N =
σB2

o

ρω
, (4)

which may be interpreted as the ratio of electromagnetic to inertia forces.
In summary, the user-parameter space, which is formed by the magnetic field

amplitude B0 and its frequency f, may also be described by the above two dimension-
less parameters N and Rω.

Boundary layers and viscous friction

Owing to the low kinematic viscosity of mercury, we may assume that the main
contribution to the viscous stresses comes from the vertical gradients of the horizontal
velocity. Let us analyse the viscous effects. We assume that they are restricted to within
a boundary layer of depth δν smaller than the pool depth h. This assumption will be
justified a posteriori. In the boundary layer at the bottom wall, the inertia of the fluid
is balanced by two contributions, namely the electromagnetic forces and the viscous
friction term. Both terms tend to decrease the fluid momentum and damp the motion.

Let us now estimate the order of magnitude of the various terms. Let η0 be an
estimate of the amplitude of the horizontal oscillating motion. The order of magnitude
of the velocity field U is

U = ωη0. (5)

When N is small, the Lorentz force is negligible compared to inertia. The inertia term
balances the viscous term and the boundary layer is analogous to a Stokes layer. The
boundary-layer thickness therefore has the classical expression (e.g. Batchelor 1967)

δvω =

(
ν

ω

)1/2

. (6)

The value of δvω is usually small compared to the pool depth, as we shall see later.
When N is large, the Lorentz force balances the viscous term. The Hartmann

number Ha is related to the interaction parameter by the following relation:

Ha2 =
ωa2

ν
N.
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The non-dimensional parameter ωa2/ν is large in the present experiment. Accordingly,
the Hartmann number is large. Thus, we may expect the development of a Hartmann-
type boundary layer along the bottom wall. Subsequently, the expression of the
boundary-layer thickness becomes (e.g. Moreau 1990)

δνB =
1

B0

√
ρν

σ
. (7)

From (6) and (7), we deduce the ratio between δνB and δνω:

δνB = δνω/
√

N. (8)

Thus, when the interaction parameter N is large, the Hartmann layer is thinner than
the boundary layer owing to the oscillatory motion for a given value of the magnetic
field angular frequency ω. The wall friction is then controlled by the magnetic field.

With the numerical values of our mercury experiment, e.g. B0 = 0.2T , f = 2 Hz,
a =0.03 m, h =0.003 m, η0 = 0.01 m, the values of δνω and δνB are equal to 89 and
184 µm, respectively. This estimate indicates that the two boundary-layer thicknesses
are comparable, since the interaction parameter is equal to 0.23 with the above
numerical values. These thicknesses are significantly lower than the pool depth h.

Note that viscosity could also play an important role at the edge of the pool in the
vicinity of the meniscus, and especially near the mercury–substrate–atmosphere triple
point. The importance of viscosity with respect to surface tension may be estimated
by means of the capillary number Ca expressed as:

Ca =
ρνU

γ
, (9)

U being a typical meniscus velocity.
The value of Ca is generally very weak in the present numerical application:

Ca =3.4 × 10−4. Viscous effects remain negligible near the edge of the meniscus, and
inertia is likely to be balanced by surface tension deviations. This is confirmed by the
order of magnitude of the Weber number that is close to unity:

We =
ρU 2h

γ
= 1.3. (10)

Comparison between gravity and electromagnetic forces

In the absence of horizontal deformation of the liquid domain, GFS92 showed
that the electromagnetic force F was axisymmetric and purely radial, and could be
expressed as:

F = − 1
4
σωB2

o r sin(ωt)r, (11)

r and r being, respectively, a radial coordinate and a unit vector along the radial
direction.

With B0 = 0.2 T, f = 2 Hz, r ≈ a = 0.03m and using (11), the amplitude of the
electromagnetic force can be estimated as:

F ≈ 3.77 × 103 Nm−3 (12)

Note that the amplitude of the corresponding specific gravity force is equal to

ρg = 1.33 × 105 Nm−3 (13)

Nevertheless, because of the conicity of the substrate, the projection of the gravity
body force on the lower wall is smaller and equal to 2.05 × 103 Nm−3. The latter
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(a) (b) (c)

Figure 4. Free-surface patterns viewed from above in the first regime for various magnetic
field frequencies. The photographs show the modes resulting from the applied frequencies. The
oscillation frequency is equal to twice that of the magnetic field (forced-wave regime). The
initial drop radius is a = 30mm. The proportionality factor between the magnetic field strength
(maximum value in tesla) and the coil current I (r.m.s. value in amperes) is 0.0024. (a) I = 0.
(b) f = 1.354Hz, I = 65 A. (c) f = 9.602 Hz, I = 62 A.

value is of the same order of magnitude as the estimate of the electromagnetic force
(12). This indicates that gravity forces probably play a non-negligible role.

4. Results
In the present experiments, the parameter space mainly consists of three quantities,

namely:
(i) the pool radius a;
(ii) the magnetic field strength B0 or equivalently the coil current I ;
(iii) the magnetic field frequency f or angular frequency ω = 2πf .

4.1. Surface patterns

For a given magnetic field frequency, we increase the magnetic field strength from zero
to approximately 0.3 T. Two pool radii are considered, namely a =30 (figures 4–6)
and 53 mm (figures 7 and 8). From the observations, three main flow patterns may
be distinguished.

Axisymmetric regime

For weak magnetic field values, the free-surface pattern consists of axisymmetric
waves, as shown in figure 4. Their frequency is equal to the oscillation frequency
of the electromagnetic forces (twice the frequency of the magnetic field), and their
deformation is mainly vertical, except in the very low-frequency cases (f � 1 Hz).
Their amplitude has not been measured precisely. From side photographs, we observe
that the amplitude of the vertical deformation is, at most, of the order of 0.5 mm in
the current range considered in this regime. These waves form as soon as the magnetic
field strength is non-zero. They are probably directly forced by the oscillating part of
the electromagnetic forces in analogy with GF92 and GFS92.

Structured azimuthal waves

When the magnetic field value reaches a given threshold, non-symmetric surface
waves appear (figure 5). The wave shape is regular and the wave pattern may
be clearly identified. The dominant azimuthal mode, which is excited, depends on
the frequency of the magnetic field. Its wavelength decreases as the magnetic field
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Figure 5. Free-surface patterns viewed from above for various magnetic field frequencies. The
photographs show the modes resulting from the applied frequencies. The oscillation frequency
is equal to that of the magnetic field (parametric regime). The initial drop radius is a = 30 mm.
The proportionality factor between the magnetic field strength (maximum value in tesla) and
the coil current I (r.m.s. value in amperes) is 0.0024. (a) f = 0 Hz, I = 0 A; (b) 1.200 Hz, 130A;
(c) 1.779Hz, 7.7 A; (d) 2.102 Hz, 103 A; (e) 6.205Hz, 82 A; (f ) 9.602 Hz, 65 A.

frequency increases. The observed wave frequency is equal to the frequency of the
magnetic field (half that of the Lorentz forces), similar to observations in GF92
and GFS92. This type of behaviour is analogous to that encountered in parametric
instabilities.

We checked that the pool motion was almost two-dimensional. The whole area of
the pool is almost conserved, its variation being less than 10 %. However, the free
surface still exhibits vertical forced waves, which are superimposed on the horizontal
motion. These waves are responsible for the ‘granulation’ of the free surface, which is
clearly visible in figures 5(e) and 5(f ).

Unstructured regimes

For high values of the coil current, we observe the appearance of unstructured
regimes. Such patterns are illustrated in figures 6, 7 and 8. Two pool radii have been
used, namely a = 30mm (figure 6) and a =53 mm (figures 7 and 8).

For a = 30 mm, pulsating ‘fingers’ are observed (figure 6). As opposed to the
structured regime, the fingers are not organized in a uniform pattern. Although the
spatial location of the fingers is random, their motion follows a period of time that is
close to the applied magnetic field oscillation period. Thus, the dominant frequency of
the whole phenomenon is equal to the magnetic field frequency. For high elongation
of a finger, mercury drops are sometimes ejected and then recaptured by the liquid
fingers.
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(a)

(b)

(c)

(d)

Figure 6. Free-surface patterns for various coil frequencies and currents. The initial drop
radius is a = 30mm. The photographs show two different instants for identical electric
conditions. The proportionality factor between the magnetic field strength (maximum value in
tesla) and the coil current I (r.m.s. value in amperes) is 0.0024. (a) f = 1.540 Hz, I = 178A;
(b) 2.012 Hz, 175A; (c) 2.399Hz, 185 A; (d) 8.050Hz, 165 A.

In the case of large pool radius, i.e. a = 53 mm, the fingers are once again present, but
may be very long. The free-surface pattern exhibits additional features. In figure 7, for
example, large intermittent cavities may be observed in the sequence of photographs.
A large cavity is formed on the left-hand part of the figure and disappears after
approximately 1 s. The cavity is generally associated with a significant horizontal
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Figure 7. Successive views of an unstructured pattern for f = 4.167 Hz, I = 120 A. The initial
drop radius is a = 53 mm. The time-interval between each photo is 1/25 s. Large cavities are
visible, for example on the left-hand side. A ‘void’ inclusion may also be observed in the
bottom part of the pool.

rotational motion of the liquid metal in its vicinity. In the same figure, note the
development of a similar structure at the bottom of the pool. However, in this case,
the cavity is finally closed by a liquid finger (figure 7i). This leads to a void inclusion.
Such a void inclusion is also observed in figure 8(a).

When the coil current becomes even higher, the free surface becomes highly
unstructured (e.g. figure 7). The pool bulk exhibits long and narrow ridges. These
striations are a consequence of local vertical deformation of the free surface. These
vertical ridges may be interpreted as a measure of the pressure field as in open-channel
flow. These structures evoke the hydraulic jump phenomenon, which occurs in open-
channel flow when the horizontal velocity exceeds the celerity of the surface waves.
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(a) (b)

(c) (d)

(e) ( f )

Figure 8. Views of non-structured patterns for various frequencies. The initial drop radius is
a = 53mm. Note that the length scales decrease as the frequency increases. (a) f = 3.296Hz,
I = 124A; (b) 4.167Hz, 125A; (c) 7.575Hz, 125 A; (d) 8.106 Hz, 115 A; (e) 12.33, 96A;
(f ) 2.50Hz, 125 A.

Indeed, the celerity of such waves, which is of the order of (ghe)
1/2 ≈ 0.17 m s−1, may

be less than the liquid velocity estimate given by ωη0 ≈ 0.26 m s−1 for f = 4.16 Hz
and η0 = 0.01 m. As the magnetic field frequency increases, this surface structure
disappears and is replaced by a more uniform granulation (figure 8).
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Figure 9. Stability boundary of a pool of mercury of 30mm radius for various magnetic field
frequencies. Parametric instability appears as soon the coil current is greater than the threshold
value.

As in the previous regime, the length scales of the surface waves decrease as
the magnetic field frequency increases. This is clearly visible in figure 8, where the
granulation of the pool surface becomes finer and finer as the frequency increases.
For the highest frequencies (Figures 8e and 8f ), note that the pool contour is almost
smooth in spite of large-scale deformation. Note also that for the configuration shown
in figure 8(f ), the pool is not steady , but slowly moves as a whole toward the side
of the substrate.

4.2. Stability diagram

Concerning the transition between the axisymmetric and azimuthal regimes, we
have determined the threshold value of the magnetic field for various frequencies.
We focused on a relatively narrow frequency range between 1 and 2.5 Hz. Beyond
f =3 Hz, the determination of the stability thresholds was difficult. Concerning the
determination of the threshold value, we observe a strong hysteresis. Thus, all the
experimental values given in the stability diagram correspond to increasing values of
the coil current I (i.e. increasing magnetic field). The frequency increment is 0.05 Hz.
The accuracy for the threshold current is approximately ± 3A. The experimental
values are illustrated in the stability diagram of figure 9. Note that the stability curves
consist of various narrow ‘tongues’ of instability each corresponding to an azimuthal
mode, i.e. n= 4, 5, 6, 7.

For each tongue, we have superimposed various series of measurements in order
to test the reproducibility of the experiments. The observations made from these
measurements may be summarized as follows:

(i) the odd modes (e.g. n= 5 and 7) are easy to trigger as they are more re-
producible than even modes;

(ii) the higher the frequency of the magnetic field, the higher the magnetic field
amplitude must be to excite parametric waves; a similar phenomenon was observed
by GF92;

(iii) the structure of the stability diagram have many similarities with what was
observed by GF92 and analysed by GFS92 and, more generally, with the stability
diagram of the Mathieu-type equation; this behaviour reinforces the conclusion that
the so-called azimuthal waves are a consequence of a parametric-type instability.
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Unstructured regimes appear for higher values of the coil current. It was not
possible to determine a stability boundary for this regime. Nevertheless in the case
where a = 30 mm, it is observed that the number of main ‘fingers’ is generally close to
the mode number which is triggered at the same frequency in the structured pattern.
For example, in figure 6(b) (left) the surface pattern comprises approximately six main
fingers as in figure 5(d).

4.3. Wave amplitude

In the structured regimes, the wave amplitudes have been measured from an analysis
of the video recording. For three given frequencies, the maximum horizontal dis-
placement ηmax is determined as a function of the coil current. We consider only the
cases where the motion pattern is structured. The experimental values correspond to
an average over ten cycles. We have observed that the experimental data provide a
better fit when the dimensionless amplitude is plotted versus the interaction parameter
N. The results are shown in figure 10. Owing to the existence of an instability threshold,
there are no data for low magnetic field strength, i.e. for approximately N < 0.2 − 0.3.
We observe that just after the threshold, the wave amplitude increases rapidly to
approximately 8 to 10 mm, i.e. 30% of the pool radius. After that, growth is weaker
and can be expressed approximately by:

ηmax

a
= O(Np) where p varies from 0.5 to 0.7. (14)

To interpret this trend, it is of interest to review some theoretical considerations
for a case that is geometrically closer to the Faraday experiment (GF92). GF92 have
shown that the change in amplitude with respect to the coil current was governed by
the following scaling:

(i) linear regime corresponding to small values of N (or weak magnetic field
strengths):

ηmax

a
= O(N ), (15)

(ii) nonlinear regime corresponding to N = O(1):

ηmax

a
= O

(
N1/2

)
. (16)
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Figure 11. Experimental eigenfrequencies versus the pool radius for the mode n= 5.

Regarding the experimental results of figure 10, the change in the amplitudes is
closer to the estimate given by (16). We may therefore conclude that the observed
regimes are probably nonlinear in the parameter range considered here. Note that
the growth of the amplitude seems to be weaker for the highest values of N. This
can be attributed to the appearance of the Hartmann layer that replaces the viscous
boundary layer when N � 1. The oscillation amplitude was not measured for the
non-structured regimes. However, the photographs (figures 6–8) show considerable
extension of the fingers.

4.4. Eigenfrequencies

We compare the experimental pool eigenfrequencies with the theoretical eigen-
frequencies, calculated using the two-dimensional approximation (2). The experimental
pool eigenfrequencies are determined from the tongue minima shown in figure 9. Such
a procedure is only an approximation since nonlinear and viscous effects that could
shift the eigenfrequencies are not taken into account. Furthermore, owing to the
measurement discrepancies, the minima cannot be determined with great accuracy,
especially for the even modes. The data are given in table 3. Note that the experimental
eigenfrequencies are qualitatively consistent with the theoretical values, but differ by
up to 50% for the highest mode. This may indicate that the motion associated with
the dominant mode is not strictly two-dimensional and the small but non-zero vertical
displacement is probably responsible for the discrepancy. This argument is consistent
with the fact, as explained in § 3, that gravity probably plays as significant a role in
the restoring force as the surface tension.

In addition, we have measured the eigenfrequencies of the mode n= 5 for various
pool radii. The theoretical law (2) derived for the two-dimensional case predicts that
the eigenfrequencies fn vary as:

fn ∝ a−1.5. (17)

Figure 11 shows that the experimental data do not contradict the scaling (17),
but exhibit a slight deviation from the theoretical law (17). Indeed, it is found
experimentally that:

fn ∝ a−1.26. (18)

This indicates, as would be expected, that the surface free modes cannot be described
strictly by a two-dimensional approximation.
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5. Conclusions
New types of parametric electromagnetic instability have been presented. These

instabilities exhibit various horizontal patterns. For low values of the magnetic field,
the wave pattern is axisymmetric and the oscillation frequencies are identical to those
of the electromagnetic forces. These waves are likely to correspond to forced waves.
A similar behaviour was predicted by GFS92. For larger magnetic field amplitudes,
the observed waves are structured, but no longer axisymmetric. Their frequency
is half that of the Lorentz forces. The corresponding stability diagram presents
many similarities with the diagram of the Mathieu–Hill equation, which describes
parametric-type instability. This is also supported by the fact that the experimental
eigenfrequencies of the liquid pool are comparable to those predicted by the simple
two-dimensional model. Thus, the motion is likely to result from a subharmonic
transition similar to that proposed by GFS92. For large magnetic field strengths, a
peculiar totally chaotic pattern appears, with ‘fingers’ and cavity formations. Note
that the closed cavities correspond to the bubble entrapment mechanism commonly
observed in liquid processing.

In our experiments, the appearance of azimuthal waves could be attributed to two
possible mechanisms. The first could be related to a destabilization of the forced
regime, i.e. the axisymmetric waves, which are directly forced by the magnetic field
and are always present. By means of nonlinear interactions, they could lead to a
destabilization of the azimuthal modes. This type of nonlinear coupling had been
described by Rott (1970) for a double pendulum. Rott demonstrated that the second
pendulum (i.e. the azimuthal waves) draws energy from the first pendulum (i.e. the
axisymmetric waves) in a periodic exchange. Secondly, the azimuthal system could
be triggered directly by a parametric instability, which would be similar to what
GFS92 obtained for a horizontal free surface. Indeed, any free-surface horizontal
perturbation modifies the horizontal electric current as well and produces a pinching
effect in the vicinity of the drop constriction. Accordingly, the electromagnetic force
perturbations that are generated reinforce the free-surface deformation until they are
balanced by surface tension.
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